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The gravitational field produced by an infinite static cylinder with a net spin polariza-
tion along its symmetry axis is considered, in the context of the Einstein-Cartan theory
of gravitation, An exact solution is obtained, which shows that the cylinder’s spin angular
momentum gives rise to magneticlike components in the gravitational field outside.

PACS numbers: 04.20.-g, 04.50.+h

It is well known that, in the context of general
relativity (GR), the orbital angular momentum of
a rotating mass distribution gives rise to off-
diagonal terms in the metric which are responsi-
ble for the magneticlike effects coming under the
heading of the “dragging of inertial frames.”*
Among the first solutions of Einstein’s field equa-
tions exhibiting such effects, the Lense-Thirring?
metric gives an approximate representation of the
gravitational field of a rigidly rotating sphere,
while van Stockum’s® exact solution describes the
field of a rigidly rotating infinite cylinder of dust.

The question can then be naturally raised wheth-
er a gravitating source with a net intrinsic or
spin angular momentum can produce similar ef-
fects. Any piece of matter with the spin of its
particles aligned along a particular direction
would be an example of such a source.

In this note I present the answer to the above
question in terms of an exactly soluble model of
a cylindrically symmetric distribution of polar-
ized matter, constructed and interpreted on the
basis of a theory of gravitation which has attract-
ed a lot of interest recently, namely, the so-
called Einstein-Cartan(-Sciama-Kibble) (EC)
theory.! The most attractive feature of this the-
ory consists of providing a geometric framework
for the description of intrinsic or spin angular
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momentum without violating the spirit and the
predictions of GR. (The reference just cited
contains an extensive discussion of this point.)

The additional geometric feature of the space-
time manifold which distinguishes EC theory
from GR is the contorsion or defect tensor field
K% y- The latter is determined by the distribu-
tion of spin density, described by the tensor
field S*g ys Vvia the algebraic relation

‘Taﬁy+26°‘[5 Ty] =KSOLB),, (1)

where T“g, =2K* g is the torsion tensor, T

= TBQB, k =81G/C? is the GR coupling constant,
but units will be chosen such that ¢ =1 =«, and
square brackets indicate antisymmetric com-
bination of indices. Thus, torsion and contorsion
are present only in regions of nonvanishing spin
density. As in GR, the magnitude of a vector
does not change upon parallel transport in EC
space time. Consequently, the linear connection
F“BY of the manifold is determined by the metric
and contorsion fields only, i.e., I“"By = yaﬂ},

- K%, where %3, is the usual Levi-Civita part
constructed from g, and its derivatives.® All
other geometric quantities are constructed as in
GR, while the field equations read

Raﬁ‘%gaBR =kl og (2)
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reflecting the affinity of EC theory to GR. Equa-
tion (2) also reflects the difference between the
two theories in that the canonical stress-energy
tensor ¢, is in general asymmetric. The anti-
symmetric part of Eq. (2), however, is nothing
but a different expression of the equation for con-
servation of angular momentum,

(Vy+T7)SyaB =2t[Ba]' (3)

It can, thus, be subtracted from Eq. (2), leaving
the symmetric part

Rap) - %gas R = Kt(qpy , 4)

as the field equations proper.

I now consider a spin-polarized medium occu-
pying the region 0 s7 <R of a coordinate system
in which the metric reads

ds? =—e2"dt? +7% " 2V d ¢+ eXFV) (dr? + dz?), (5)

where 1 ,v are functions only of », and (r,¢) re-
present polar coordinates. I assume that the par-
ticles of this medium describe the lines of con-
stant (r,¢,2) and have their spins oriented in the
direction of the positive z axis. I further assume
that their spin density can be described classi-
cally, i.e., S%,=u%Sg,, with Sqau® =0, u* be-
ing the particles’ four-velocity. In the orthonor-
mal frame (e,,e,,e,,e5) =(79,,¢""o,,7 1e"d ,
e’""3,), these assumptions can be expressed as
u®=06,% Sy =4S (r)5,'057. Equation (1), then,
shows that T°,=-T°, =2S are the only nonvan-
ishing components of the torsion tensor, while
T, =0,

The assumptions employed so far render the J

tap) =P(L+€+p/P)thattp + Eap +U( Sy i —

where p is the mass density, p the pressure, and
Weg =€ o Voeg. Substitution of the values which
the variables appearing in Eq. (6) obtain in our
model leads to the form initially chosen for /43,
withm =p(l+€), p,=p,=p—282, and p;=p.

The solution I obtained under the above assump-
tions reads

m=p=282=28.2exp(-2u),

7
2”=(So”)2, V':O’ ( )

where S, is an integration constant, representing
the spin density at the axis (7 =0) of the cylinder.
All other integration constants were determined
by imposing the conditions (a) that ¢ is a proper
angular coordinate with period 27 near the axis,
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structure of the space-time region under consid-
eration cylindrically symmetric and static. This
is reflected in the fact that the tensor fields
which determine the space-time structure, nam-
ely gup, #%, and Sy, are independent of ¢, z,
and £, while the velocity of the particles has
vanishing projection in the surfaces of constant £.
Technically speaking, the Lie derivative of the
fundamental tensor fields g, and K*g, along the
vectors 9,, 3., and 8, vanishes, the latter being
parallel to the timelike vector field #«* and hyper-
surface orthogonal.

Two further assumptions were made in order to
obtain the solution to be presented shortly (with
details to be published elsewhere). It was firstly
assumed that the spin density is conserved, i.e.,
that S, ="V, Sqp =0. It then follows from Eq.
(3) that 44 =t(xs)y, while the field equations (4),
when written out explicitly, demand that ¢4
=diagm, p,, P2, Ps). This form of £, permits
our calling m the rest energy density and p,, p,,
and p, the principal components of stress in the
direction of v, ¢, and z, respectively. Secondly,
it was assumed that p, = p,, since the cylindrical
symmetry of the problem demands that the medi-
um should be isotropic in the directions trans-
verse to the z axis.

. The last assumption, however, can be justified
on more physical grounds, based on recent re-
sults of Ray and Smalley.®! These authors have
used a Lagrangian variational principle to obtain
a stress-energy tensor for a perfect fluid in EC
space-time, which takes into account the contri-
bution of spin to the specific internal energy, €,
of the fluid. In our notation, the Ray-Smalley
stress-energy tensor reads

S
@S Byy T @S wy 510, (6)

| and (b) that the radial stress p, vanishes at the
cylinder’s surface, located at » = R. The latter
condition will be justified shortly. Thus the in-
terior metric becomes

ds? =—dt? +v2d¢? +exp(= S2r?) @r® + dz?). (8)

In the vacuum region outside the cylinder the
field equations reduce to those of GR, namely
Rup = Rias) =0, whose general solution for the
case of stationary, cylindrically symmetric met-
ric has been obtained by Lewis.” It is the Lewis
solution that van Stockum matched to his interior
metric for the rotating dust cylinder. I use the
same solution but now the matching conditions
are modified. It has been shown by Arkuszewski,
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Copczynski, and Ponomariev® that the boundary
conditions appropriate to the EC theory are not
those of Lichnerowicz,’ but a new set, which in
our case reads, (i) the fluid particles move along
the » = R hypersurface, (ii) the component of

stress normal to this hypersurface vanishes,

(iii) the metric functions are continuous at » =R

|

and (iv)

argotﬁlr.-.Rﬂ) rgaﬁir R—0+2 r(cB)s (9

where a, 3 #7.

The first two of the above conditions have al-
ready been incorporated in our interior solution,
while it is easily verified that the last two are
satisfied if for » > R we take

x***)dtde + exp(-S,2 R?) xE172(gy2 dz?), (10)

d32=—(A2x1 kR - B x1+k)dt2+Rz( BZ 1=k Ale"'k)d(pZ
~2RAB(x'™* -
Where x=7/R, k=(1-4S2R*"Y2, A=(1+F)/2F,

=(1-%)/2k, and AB>0 I will assume that
ZSOR <1, since the case of imaginary % is not of
interest here.

The space-time represented by the line ele-
ments (8) and (10) for the interior and exterior
regions, respectively, is an exactly solvable ex-
ample of the class of globally stationary but lo-
cally static space-times which was studied re-
cently by Stachel.!® It was shown above that the
gravitational field is static in the interior region.
The field is static outside the cylinder as well,
since the timelike Killing vector £ =A 8, - BR™!

X 8 ,is hypersurface orthogonal there. However,
no timelike Killing vector can be found which is
hypersurface orthogonal everywhere. Equiva-
lently, it is impossible to define a cosmic, tlme
in this space-time.

The solution presented above is distinguished
by yet another feature. To my knowledge, it is
the first exact solution of the EC equations in
which the spin density of the source manifests it-
self, not simply by modifying the stress-energy
tensor of the mass distribution, but by a global
effect which agrees with the physical intuition
about intrinsic angular momentum, namely by
inducing magneticlike terms in the gravitational
field. This is not the case with Prasanna’s'!
class of solutions for a static.cylinder in EC
theory, for example.

Lastly, but most importantly, this solution
provides a concrete theoretical model on the bas-
is of which one can think of testing the EC theory
vis-a-vis classical GR. Following Stachel,'° one
can consider an Aharonov-Bohm!? type experi-
ment in which a coherent beam of light is split
into two components which are reunited after.

passing around opposite sides of a cylinder. A
shift of the interference pattern which is pro-
duced by a rotating as well as by a static but spin-
polarized cylinder would be clearly in favor of
the EC theory, as only the latter can account for
both cases on an equal footing.
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